High sensitivity and quantitative ¹³C measurements using "Q-POMMIE"

Product used : Nuclear Magnetic Resonance (NMR)

POMMIE (Phase Oscillations to MaxiMIze Editing) is a ¹³C experiment that, like the more familiar DEPT experiment, utilizes polarization transfer to enhance the intensities of the ¹³C signals. However, unlike DEPT, POMMIE edits the spectrum by varying pulse phase rather than adjusting pulse flip angle.

Fig. 1 shows the pulse program of Q-POMMIE (Quantitative-POMMIE)¹). It improves quantitative performance by varying Δ and pulse phase to average the efficiency of polarization transfer (Fig. 1). The spectrum pattern of Q-POMMIE is identical to DEPT45.

Quantitative NMR measurements require sufficiently long repetition times to allow the (near complete) recovery of magnetization between scans. For the standard ¹³C{¹H} inverse gated decoupling method, the minimum acceptable repetition time is dictated by the ¹³C T₁s, which can be very long (up to several minutes). On the other hand, the minimum repetition time of the Q-POMMIE method is dictated by the usually much shorter ¹H T₁s. This means that Q-POMMIE can yield quantitative ¹³C spectra in less time and with higher sensitivity than via the ¹³C{¹H} inverse gated decoupling method.

Fig. 2 shows a comparison of ¹³C{¹H} inverse gated decoupling and Q-POMMIE spectra of 10% Cinnamic acid cis-3-hexenylester in CDCl₃. Although quaternary carbons are not observable in the Q-POMMIE spectrum, protonated carbon signals are recorded with significantly higher sensitivity, thereby allowing more accurate quantitation. Tab. 1 shows the comparison of the peak integrals obtained from each spectrum. While the CH integrals are significantly underrepresented in DEPT45, those obtained using Q-POMMIE are very close to those obtained via the ¹³C{¹H} inverse gated decoupling method.

Features of Q-POMMIE

JEO

(Comparison with ¹³C{¹H} inverse gated decoupling)

- Higher sensitivity
- ·Quaternary carbons are not observed
- •Quantitative condition is dictated by ¹H T₁s not ¹³C T₁s
- Requires large minimum number of scans (96 × n)

Fig. 1: Pulse program of Q-POMMIE

Sample: 10% CAHE/CDCl₃ Instrument: JNM-ECZ400S & ROYALprobe™HFX Number of scans: 384 Pulse repetition time: 46 s

Reference

1) Anal. Chem. 2008, 80, 8293-8298.

Cortain products in this brochure are controlled under the "Foreign Exchange and Foreign Trade Law" of Japan in compliance with international security export control. JEOL Ltd. must provide the Japanese Government with "End-user's Statement of Assurance" and "End-use Certificate" in order to obtain the export license needed for export from Japan. If the product to be exported is in this category, the end user will be asked to fill in these certificate forms.

Exp δ(ppm)	¹³ C{ ¹ H} inverse gated decoupling	Q-POMMIE	DEPT45
14.3 (CH ₃)	1.00	1.00	1.00
20.7 (CH ₂)	0.98	0.97	0.92
26.9 (CH ₂)	0.89	0.94	0.94
64.2 (CH ₂)	0.99	1.07	1.07
118.3 (CH)	0.95	0.97	0.69
123.9 (CH)	0.91	0.92	0.67
128.1 (CH)*2	1.85	1.87	1.44
129.0 (CH)*2	1.96	1.92	1.45
130.3 (CH)	0.95	0.99	0.67
134.5 (CH)	0.87	0.85	0.64
144.8 (CH)	0.95	0.96	0.66

Tab. 1: Integral values of protonated ¹³C signals shown in Fig. 2

Practical Example: UV Initiator

JEOI

JEOL Ltd.

As an illustration of the utility of the Q-POMMIE experiment, Fig. 3 shows a comparison of spectra recorded on a sample of a UV initiator. The ¹³C spectrum of this sample contains a signal at 77.2 ppm which is completely obscured by the solvent signal, so its integral cannot be determined via ¹³C{¹H} inverse gated decoupling (Fig. 3a). On the other hand, the solvent signal is not visible in the Q-POMMIE spectrum, allowing this signal to be cleanly observed and hence integrated (Fig. 3b).

Sample preparation: 10 mg sample/CDCl₃ Instrument: JNM-ECZ500R & 5mm SuperCOOL probe Scans: 960 Pulse repetition time: 20 s

Sample courtesy of Mr. Yuuji Itoh (TOYO INK SC HOLDINGS CO., LTD)

Copyright © 2019 JEOL Ltd. Certain products in this brochure are controlled under the "Foreign Exchange and Foreign Trade Law" of Japan in compliance with international security export control. JEOL Ltd. must provide the Japanese Government with "End-user's Statement of Assurance" and "End-use Certificate" in order to obtain the export license needed for export from Japan. If the product to be exported is in this category, the end user will be asked to fill in these certificate forms.

3-1-2 Musashino Akishima Tokyo 196-8558 Japan Sales Division Tel. +81-3-6262-3560 Fax. +81-3-6262-3577 www.jeol.com ISO 9001 • ISO 14001 Certified

• AUSTRALIA & NEW ZEALAND • BELGIUM • BRAZIL • CANADA • CHINA • EGYPT • FRANCE • GERMANY • GREAT BRITAIN & IRELAND • ITALY • KOREA • MALAYSIA • MEXICO • RUSSIA • SCANDINAVIA • SINGAPORE • TAIWAN • THE NETHERLANDS • USA