

Determine number of protons attached to each carbon in fluorine-containing compounds by ¹³C NMR spectroscopy!

Product used : Nuclear Magnetic Resonance (NMR)

We usually use DEPT135 (Distortionless Enhancement by Polarization Transfer) experiment to analyze ¹³C multiplicity. In the case of fluorine-containing compounds, not only ¹H decoupling but also ¹⁹F decoupling is efficient. J_{CF} are larger than J_{CH}, and so ¹³C peaks are often affected even by long-range couplings. In such instances, we can achieve the maximum sensitivity and singlet signals by ¹³C measurement with simultaneous ¹H and ¹⁹F decoupling. The figures below show ¹³C and DEPT spectra of 20% 2,2,3,3tetrafluoropropanol in CDCl₃. You can see that ¹³C and DEPT spectra are simplified with ¹⁹F decoupling.

ROYALPROBE HFX can perform these ¹H, ¹⁹F, ¹³C triple-resonance measurement, even with a standard 2-channel console!

• AUSTRALIA & NEW ZEALAND • BELGIUM • BRAZIL • CANADA • CHINA • EGYPT • FRANCE • GERMANY • GREAT BRITAIN & IRELAND • ITALY • KOREA • MALAYSIA • MEXICO • RUSSIA • SCANDINAVIA • SINGAPORE • TAIWAN • THE NETHERLANDS • USA